Rad-supplemented property in the lattices
نویسندگان
چکیده
Let L be a lattice with the greatest element 1. Following concept of Radsupplemented modules, we define Rad-supplemented filters and will make an intensive investigate basic properties possible structures these filters.
منابع مشابه
On Rad-H-supplemented Modules
Let M be a right R-module. We call M Rad-H-supplemented iffor each Y M there exists a direct summand D of M such that(Y + D)/D (Rad(M) + D)/D and (Y + D)/Y (Rad(M) + Y )/Y .It is shown that:(1) Let M = M1M2, where M1 is a fully invariant submodule of M.If M is Rad-H-supplemented, thenM1 andM2 are Rad-H-supplemented.(2) Let M = M1 M2 be a duo module and Rad--supplemented. IfM1 is radical M2-...
متن کاملRad - ⊕ - Supplemented Modules
In this paper we provide various properties of Rad-⊕-supplemented modules. In particular, we prove that a projective module M is Rad⊕-supplemented if and only if M is ⊕-supplemented, and then we show that a commutative ring R is an artinian serial ring if and only if every left R-module is Rad-⊕-supplemented. Moreover, every left R-module has the property (P ∗) if and only if R is an artinian s...
متن کاملCharacterizing trees in property-oriented concept lattices
Property-oriented concept lattices are systems of conceptual clusters called property-oriented concepts, which are partially ordered by the subconcept/superconcept relationships. Property-oriented concept lattices are basic structures used in formal concept analysis. In general, a property-oriented concept lattice may contain overlapping clusters and is not to be a tree construction. Additional...
متن کاملUniform Kadec-Klee Property in Banach Lattices
We prove that a Banach lattice X which does not contain the ln ∞uniformly has an equivalent norm which is uniformly Kadec-Klee for a natural topology τ on X. In case the Banach lattice is purely atomic, the topology τ is the coordinatewise convergence topology. 1980 Mathematics Subject Classification: Primary 46B03, 46B42.
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quasigroups and Related Systems
سال: 2022
ISSN: ['1561-2848']
DOI: https://doi.org/10.56415/qrs.v30.05